IE GAC Presentation Food-Energy-Water Nexus

Dr. Edward Spang Food Science and Technology Center for Water-Energy Efficiency May 4, 2017

"Three consumables – water, food and fuel – are perhaps the most important materials imported into urban systems" (Decker et al., 2000).

Adapted from Machell et al. 2015

- FEW Opportunities & Challenges

Chang et al. 2016

- Progression of research
 - Water for energy
 - Energy for water
 - Water-Energy-Food
 - Food Loss and Waste

- Progression of research
 - Water for energy
 - Energy for water
 - Water-Energy-Food
 - Food Loss and Waste

- Fuel Production
 - Mining and extraction
 - Cultivation of biomass
 - Refining

Wide variation in water intensity within and between energy categories

- Fuel Production
 - Mining and extraction
 - Cultivation of biomass
 - Refining

Water use for biofuel feedstock cultivation is 2-3 orders of magnitude greater than for other fuels

Water Consumption for Electricity

Again, wide variation in water intensity within and between categories

Macknick et al. 2012

- Consistent indicator
- 4 energy categories
- 37 energy processes
- 158 countries
- Extensive indicator

- Progression of research
 - Water for energy
 - Energy for water
 - Water-Energy-Food
 - Food Loss and Waste

- Progression of research
 - Water for energy
 - Energy for water
 - Water-Energy-Food
 - Food Loss and Waste

Wide variation in energy intensity within and between water process categories.

Energy for Water: State Scale

- CA urban water conservation mandate
- 25% reduction in urban water use
- How much energy and GHG savings?

Energy for Water: California

- Spatial Distribution:
 - Water use
 - Energy intensity
 - GHG emissions

Energy for Water: California

- Integrated geography of water-electricity-GHG savings
- South Coast hydrologic zone dominates water savings and linked energy/GHG savings

 More electricity saved through water conservation than energy efficiency programs implemented over the same time period

Energy for Water: California

 Cost of electricity savings achieved through water conservation independently competitive with EE programs

Energy for Water: California

 AND, cost of GHG savings achieved
through water
conservation
independently
competitive
with GGRF
programs

Energy for Water: Utility Scale

Phase 1 Tasks:

- Data Integration
- Energy Intensity Analysis
- Web-based platform

2008		Monthly Report	04012008														il.r	h							
2000	Jan 🔄 Jan	a monthly report		RESERVOIR LEVELS (FT.)	12 M 1									and the second	- Mars		Labor C	and the st	without	mal.	ables. its	مادور الدور	alaberta	Manpha Angeline	n interest
2009	Feb	Daily Reports	04022008	PUMP1 PUMP2		9.7 9		5 9.6						121				1.00.0.0			_				_
2000	reb	a south to be the		PUMP3		24.3 24		4 24.6							7.2	7.0 0.0							8.2		
2010	Mar		04032008	PUMP4	13.4				12.6	12.5		0 10.8		15.5	14.7	16.1 571	18.4	19.6	16 214	22.2	10.8 10	8 190	18.3	17.7	
20.0	iviar		1000000 100000000000000000000000000000	PUMP 5	13.5			8 12.7			12.4 12			13.6	14.9	16.2 17.	18.6	19.7	17 23.5	22.4	20.9 19	9 191		17.8	
2011	Apr		04042008	PUMP 6	83.7			4 79.8						71.5		66.1 63.				55.4		8 63.1			
2011	Api			PUMP 7	2.0	2.0 2	.0	0 2.0	2.0	2.0	2.0 2	0 2.0	2.0	2.0	2.0	2.0 2.1	20	2.0	2.0 2.0	2.0	2.0 2	0 2.0	2.0	2.0	
2012	May		04052008	PUMP 8	27.7	29.3	18 30	6 947	57.0	38.8	38.6 58	0 376	- 97.5	37.8	38.1	38.2 38	38.1	38.2	8.3 38.4	38.1 1	57.3 56	5 35.8	\$5.7	36.0	
2012	iviay		년 04052008	PUMP 9	0.0	0.0 0	0.0	0.0 0.0	0.0	0.0	0.0 0	0 0 0	0.0	0.0	0.0	0.0 0.1	0.0	0.0	0.0 0.0	0.0	0.0 0.	0.0	0.0	0.0	
2013	and the second second		04062008	PUMP 10	21.5			.0 28.4			31.3 31		30.8	31.0		31.4 31.0			1.5 31.9						
2010	Jun		04062008	PUMP 11 PUMP 12		57.9 60		4 34.8								44.3 43.4			8.5 38.8						
2014	Jul			PUMP 12 PUMP 13		16.8 15		2 18.6						27.3					8.1 27.4					27.1	
2014	Jui		04072008	PUMP 13 PUMP 14	28.8						22.3 20		39.4	40.6		11.8 11.1			1.7 32.7		28.5 26	1 23.5		19.1	
2015	1000 Aug		-	PUMP 15	13.6			2 14.5			35.5 34 14.4 13			13.2		42.9 43.5			4.8 15.1					14.7	
2010	Aug		04082008	PUMP 16		31.5 32		2 34.1											8.6 40.1						
	Con.			PUMP 17	34.8			2 38.0		40.1	40.1 59		38.5	37.8			30.0		2.5 45.9						
	Sep		04092008	PUMP 18	25.0		.5 20	0 26.5	27.1	27.9	28.2 25	3 29.4	31.4	32.9			33.6		9.8 27.3						
	Oct			PUMP 19	27.4	27.7 25	10 21	5 28.9	29.5	30.1	30.2 30	4 30.9	31.9	33.4	33.5	33.6 33.	33.7	32.9	0.4 27.9	25.6	22.6 20	4 23.2	26.3	29.5	_
	Oct		04102008	PUMP 20	24.3	25.5 26	1.6 21	.0 29.4	30.8	32.2	35.1 34	0 34.7	33.7	32.6	31.8	30.8 29.5	29.0	25.2 3	7.1 26.1	25.0	13.2 23	7 19.9	18.2	16.6	
	Nov			PUMP 21	22.1	21.1 20	1.4 19	5 18.7	18.0	17.0	15.7 14	6 13.4	12.6	11.6	10.9	9.9 8.1	8.4	34.5	9.9 24.2	28.0 3	12.2 33	7 32.7	31.8	31.2	
	NOV		04112008																						
	Dec			WTP Pumpage Rate (MGD)				_					10A-15A		_			_	6P 6P-1P					_	
			04122008	PUMPS 32-55 PUMPS 54	0.0			0.0			0.0 0.	0.0	0.0	0.0	0.0	0.0 0.0			0.0 0.0		0.0 0.0		0.0		
				PUMPS 33-38	0.0				0.0	0.0	00 0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0		0.0 0.0				
			04132008	PUMPS 53-58 PUMPS 57	0.0		0 0		0.0	0.0	00 0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	00 00	0.0	0.0 0.0	0.0 0.0			
				TOTAL PUMP RATE	0.0				0.0	0.0	00 0	0 0.0	0.0	0.0		00 00			00 00	0.0	00 0	0 0.0			
			04142008																						
				WTP Pumpage Rate (MGD)		-24 24-1		4A-5A				A 94-10A	10A-15A		24-10 92	20 20-30	3P-4P 4	IP-SP 5P.		10-10 10			10-1244		
			04152008	MEDIUM SERVICE PUMP 11	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0 0.1	0.0	0.0	0.0 0.0	0,0	0.0 0.	0.0	0.0		
			Le 04152008	MEDIUM SERVICE PUMP 12	0.0	0.0 5	18 1	5 17.4	17.5	17.4	17.5 17	5 17.5	17.5	17.2	17.1	17.2 17.1	0.0	0.0	0.0 0.0	0.0	0.0 0.	.0 0.0	0.0		
			04162008	MEDIUM SERVICE PUMP 13	10.5		1.5 (0.0	0.0	0.0	0.0 0	0 0 0	0.0	0.0	0.0	0.0 0.1	10.5	10.2	0.3 10.3	10.9	10.6 10.		10.5		
			04162008	MEDIUM SERVICE PUMP 14	0.0			0.0	0.0	0.0	0.0 0	0.0		0.0	0.0	0.0 0.1			0.0 0.0		0.0 0.		0.0		
			-	MEDIUM SERVICE PUMP 15	18.8				17.8	17.8	17.8 17	9 17.6	17.6	17.7					8.1 18.1		18.7 18.		18.9		
			04172008	MEDIUM SERVICE PUMP 16 MEDIUM SERVICE PUMP 17	0.0			0.0 0.0		0.0		0 00	0.0	0.0	0.0	0.0 0.1			0.0 0.0			0.0 0.0			
				TOTAL MED. SERVICE PUMPAGE RATE		20.2 19		2 19.1											9.6 19.6				20.2		
			04182008	TOTAL MERA, BERY, PUMPAGE RATE	49.2	47.7 34	1 2	4, 24.4	.43	14.5	20 24	243	23.9	22.8	22.3	20.2 33.2	45.1	46.7	48.0	*2.3 *	9.2 49.	49.8	49.7		

Phase 1 Tasks:

- Data Integration
- Energy Intensity Analysis
- Web-based platform

Phase 1 Tasks:

- Data Integration
- Energy Intensity Analysis
- Web-based platform

- Integration of customer use data into dashboard
- Model water, energy, GHG*, and cost savings

*Assuming 1.1 lbs CO2e/kWh for Austin Energy grid and included for illustrative purposes knowing that AW is 100% renewable with wind

Energy for Water: Austin

- Explore conservation scenarios
 - By customer type

31

Energy for Water: Austin

- Explore conservation scenarios
 - By customer type
 - And by pressure zone

Energy for Water: Household Scale

- Water, Energy, and Behavior

- Understanding behavioral communication
 - Benchmarking & norms based communication
 - RCT: Spillover effect of conservation messages?

- Observed savings: 4.6% water; 1.3% electricity
- Challenge: Integration of private data

1 read/15m >35K reads/yr

Water Treatment Effects Over Time

Electricity Treatment Effects Over Time

- Progression of research
 - Water for energy
 - Energy for water
 - Water-Energy-Food
 - Food Loss and Waste

- Progression of research
 - Water for energy
 - Energy for water
 - Water-Energy-Food
 - Food Loss and Waste

- Project: FEW LCA

- Advancing existing research on lifecycle assessment (LCA) of California almond production
 - Refining energy for irrigation water, which varies by:
 - Crop type
 - Surface v. groundwater
 - Location

Model Framework for Life Cycle–based Assessment of Energy Use and Greenhouse Gas Emissions in Almond Production

(Kendall et al. 2015)

- Project: Measuring Crop Loss

- Goal: Improve understanding of onfarm losses for key CA crops
- Partners:
 - World Wildlife Fund
 - Global Cold Chain Alliance
- UC Davis
 - CA crops: tomatoes, leafy greens, and peaches
 - Surveys, interviews and in-field measurement
 - Analysis of water, energy, and other key inputs

- Project: Anaerobic Digestion

 Using microorganisms to convert organic material → biogas → electricity, heat, and fertilizer

- California legislation, AB 1826 (2014), for mandatory organics recycling
- What to do with all the waste?
- CEC project to research the tradeoff between large centralized facilities vs. smaller decentralized facilities

Large regio Food waste may be hauled over long distances due to small loc large collection area. arge cent Micro AD Biogas Biogas refining AD site Captured AD CHP Food AD CHP food waste waste **Energy largely used** on-site. Energy largely put on Within sourcing boundary, the arid and used offall food waste is collected Organic residues used A fraction of waste is **Organic residues sent** site and needs minimal locally as fertilizer. often landfilled, which off-site for further transportation to AD site. treatment, disposal, or can lead to atmospheric No food waste is landfilled. & groundwater pollution. use as fertilizer

PROPOSED TECHNOLOGY

CONVENTIONAL FRAMEWORK

- End of Waste Project

- Participatory project between students, faculty, and industry.
- Formulate three food products using "waste" fruit/vegetable pulp from juice company.
- Jointly achieve sensory, cost, and sustainability objectives.

Market Research and Logistics

- Mapping flows of pulp production by product type
- Estimate max growth of production based on available supply
- Understand environmental implications of waste recycling

UC Davis FLW Collaborative

- Organize existing and emerging FLW Research by thematic area:
 - Measurement and characterization
 - Supply chain efficiency
 - Consumer and behavioral science
 - Novel products and markets
 - Advanced recycling solutions
- More than 20 faculty and students from more than 10 departments!
- Kick-off meeting next week
 - 9:30am 11:30, May 12
 - Location TBD

i – Information

The application process is now open for FST 298 Design Thinking for Food (Fall 2017), an interdisciplinary graduate seminar in which students learn and apply the tools of the Social Sciences and Design Thinking to address complex food systems challenges. The focus for next fall will be reducing food waste and applications are welcomed from Graduate Students in ANY graduate group, as well as ambitious Juniors and Seniors from ANY Major.

To learn more about the class and/or apply to participate next year please visit: http://designthinkingforfood.weebly.com/

Instructors: Charlotte Biltekoff Lauren Shimek

Thank You

Ned Spang esspang@ucdavis.edu

